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a b s t r a c t

We solve the phase-field equations in two dimensions to simulate crystal growth in the
low undercooling regime. The novelty is the use of a fast solver for the free space heat
equation to compute the thermal field. This solver is based on the efficient direct evalua-
tion of the integral representation of the solution to the constant coefficient, free space
heat equation with a smooth source term. The computational cost and memory require-
ments of the new solver are reasonable and no artificial boundary conditions are needed.
This allows one to solve for the thermal field in a computational domain whose size
depends only on the size of the growing crystal and not on the extent of the thermal field,
which can result in significant computational savings in the low undercooling regime.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Freely growing single crystals exhibit a wide range of crystal-melt interface morphologies, including faceted and dendritic
structures, and as a result, have been of great interest to the engineering, scientific, and mathematical communities for dec-
ades. Researchers have attempted to understand, predict, and control solidification morphologies which ultimately impact
material properties and performance [27]. Crystal growth morphologies have also been a subject of interest to researchers
studying nonlinear dynamical systems because freely growing crystals are examples of rich, pattern-forming systems
[29,10].

Numerical simulation of dendritic growth has become an important tool in understanding how crystal morphologies
evolve in various experimental and theoretical regimes. It has attracted the attention of computational scientists motivated
to develop and improve numerical methods for accurately reproducing the two- and three-dimensional tree-like structures
that emerge when crystals form in an undercooled melt. As a result, several effective methods are now available, including
those based on solving the physically derived phase-field equations [14,5,35,47], as well as level set and Lagrangian methods
which can be used to solve the related Stefan problem [43,6,32]. For an overview of phase-field modeling and contemporary
views of crystal growth, see the review papers by Karma [24], Provatas et al. [39], Boettinger et al. [2] and Glicksman and
Lupulescu [16].

Regimes of theoretical and experimental importance most easily accessible by numerical computations are those for
which the temperature of the liquid melt is relatively far from the equilibrium melting temperature. In such regimes, the
non-dimensional undercooling parameter, the Stefan number, is large (typically O(1)) and crystals grow fast relative to
. All rights reserved.
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the expansion of the thermal field. One can observe interesting results before the extent of the thermal field exceeds the
computational domain and adequate resolution of the solid–liquid interface can be achieved at modest computational ex-
pense. Many of the early dendritic growth calculations reported in the literature were computed in this regime
[46,45,3,34,25,48,33]. In another regime of theoretical importance, one assumes an infinite thermal decay rate and models
the heat transport using a free-space Laplace equation. In this case, the computational mesh for the thermal field can be
eliminated entirely by using front-tracking methods coupled with boundary integral techniques to directly solve for growth
velocities along the solid–liquid interface [4,7,8].

By contrast, obtaining accurate numerical solutions in the regime of low undercoolings still proves to be computationally
challenging. For low Stefan numbers (see Eq. (8)) crystals grow very slowly relative to the rate of expansion of the thermal
front and the extent of the thermal field in the liquid can quickly exceed by several orders of magnitude the size of the grow-
ing crystal. To obtain results which can be used to confirm existing theory or be validated by experiments, long simulation
times may be required. In the free growth experiments of Koss et al. carried out in NASA’s USMP-4 (Ref. [18] in Provatas et al.
[38]), pivalic acid was grown at a variety of undercoolings. The lowest undercooling corresponded to a melt temperature of
approximately 0.5 K below the melting point, or to a Stefan number of about 0.05. Under these conditions, it can take a long
time to establish steady state dendrite tip growth conditions, which has often been the goal of many experimentalists trying
to verify theories of dendritic growth.

In addition, the length scale representative of the solid–liquid interface thickness is on the order of a few nanometers at
most, for the primary, secondary and tertiary dendritic branches it can be up to microns and for the extent of the thermal
field, centimeters. A numerical simulation which attempts to reproduce these experimental results would need to correctly
compute the thermal field over long simulation times, while adequately resolving the interface thickness as well as the
emerging dendritic features.

Typically, in numerical simulations using finite difference or finite elements methods, the computational domain is taken
to be large enough to contain the entire thermal field. This is due to the fact that in order to match experiments, numerical
simulations must not exhibit any spurious artifacts introduced by the presence of an artificial computational boundary. Dur-
ing the early stages of actual crystal growth, the experimental container is typically large relative to the size of the crystal.
For an initially uniform undercooled melt, disturbances in the thermal field due to the growth of a crystal are damped at
distances as far as the container boundary, and the thermal field is fully captured by the container. The experimental con-
tainer is assumed to have negligible, if any, effect on the evolving solidification front. In fact, this is a critical requirement for
experimentalists attempting to validate the steady state theories of dendrite tip velocities and tip curvatures.

For slowly growing crystals, long simulation times are required before interesting results can be observed, and as a result,
the thermal field will exhibit time dependent behavior far from the crystal interface. Capturing the thermal field numerically
places significant demands on computational resources.

1.1. Numerical approaches

In this paper, we focus on the efficient computation of the thermal field during free crystal growth in the low underco-
oling regime. The lowest undercooling considered in the numerical results section is S ¼ 0:025.

A vast majority of studies on the numerical solution of the phase-field model use finite-difference or finite element
schemes, which are relatively easy to implement. Such methods require artificial boundary conditions which must be im-
posed on the thermal field at the boundary of the computational domain.

The boundary conditions that are almost universally applied because they are easy to implement are purely Neumann
conditions (see [34,3,42]). This choice of artificial boundary conditions will result in a distorted thermal field at long times
and hence an incorrect solution to the free space crystal growth problem.

To reduce the adverse effects caused by imposing inappropriate artificial boundary conditions on finite computational
domain, one typically increases the size of the computational domain and introduces mesh adaptivity. In [41,40] an adaptive
mesh refinement (AMR) technique was used to successfully model two-dimensional free growth at the low undercoolings
described in the pivalic acid experiment above.

A different approach was taken in [36] where an adaptive Monte-Carlo method was used to compute the thermal field.
This approach does not require artificial boundary conditions but is probabilistic.

In our approach, we eliminate the need for artificial boundary conditions for the thermal field because we use a form of
the solution which automatically satisfies the correct boundary conditions on the computational domain. In other words,
these conditions do not need to be artificially imposed. The form of the solution we suppose is that it is the sum of convo-
lution integrals involving the initial data and the source term. Our numerical method then discretizes these integrals in an
efficient and accurate manner by using a recently developed method for the free space heat equation called the Fast Recur-
sive Marching (FRM) method [31]. For the second equation of the phase-field model, the phase equation, we will use the RKC
(Runge–Kutta–Chebyshev) method [44] (for the time integration of parabolic PDEs discretized by the method of lines). The
RKC method is an explicit method which computes the solution of moderately stiff problems in a time interval with a small
of number of stages and function evaluations while ensuring stability. We have not seen the use of the RKC method for the
phase equation before in literature.

Our approach is complementary to mesh and time adaptivity. To simulate at very low undercoolings and long times,
adaptivity must be incorporated into any method that solves for the thermal field. The FRM method can readily fit into
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an adaptive scheme because it accepts non-uniform, non-structured meshes and variable time steps. Incorporating adaptiv-
ity into the FRM method is ongoing work and adaptive FRM is not yet available at the present time. In this paper, we will
present the method for uniform Cartesian meshes and explain where appropriate how to extend it to locally refined as well
as unstructured meshes. We have implemented a simple adaptive enlargement of the computational domain as the crystal
approaches the computational boundary. The thermal field can be computed on the enlarged computational domain in a to-
tally natural way even though the support of the thermal field has long since expanded outside of the previous computa-
tional domain. Such an approach would not be feasible with typical finite-difference/element based methods.

Our approach is a competitor of the Monte-Carlo approach. The FRM is a deterministic method which produces the exact
solution to the thermal equation modulo discretization errors. Monte-Carlo is a probabilistic method and the accuracy de-
pends on the number of random walkers.

The extension of our method to three dimensions poses no theoretical difficulties. It awaits the development of the three-
dimensional FRM method which so far is limited to two dimensions.

We summarize here the most important features of the Fast Recursive Marching method as applicable to the phase-field
model. Details are fully described in [31].

� The numerical solution is based on the efficient evaluation of the integral representation of the solution to the constant
coefficient, time dependent heat equation. Hence, no artificial boundary conditions are needed. The high cost typically
associated with evaluating convolution integrals in time is drastically reduced. At each new time step, the solution at
the current step can be computed using only values from a few previous time steps.

� An accurate solution to the evolving thermal field can be obtained on a computational domain whose size is dictated by
the size of the crystal, and not by the thermal field. The value of thermal field can be adaptively computed on ever larger
computational domains as the crystal grows even though the support of thermal field has exited the current computa-
tional domain at some time in the past.

� The computational time and memory requirements of the Fast Recursive Marching method are on the same order as for a
standard explicit finite difference/element method with the same spatial resolution. The gain will come from the fact that
the new approach allows smaller computational domains and hence fewer spatial discretization points in total. The sav-
ings increases with increasing simulation time since the diffusion of the thermal field occurs on a length scale that is
Oð

ffiffi
t
p
Þ, where t is the time of simulation.

� There are no numerical stability constraints on Dt. Temporal accuracy depends on the polynomial approximation order for
the source term.

� The method is spectrally accurate in space.

We mention here that yet another possible approach, which does not appear to be widely used, involves formulating the
exact boundary conditions for the thermal equation and then coupling these conditions to finite differences/elements solvers
for the interior of the computational domain. The idea is that if heat is allowed to escape the computational domain as if the
artificial boundary were not there, then the domain needs only be large enough to contain the crystal interface itself. Such
transparent boundary conditions for the heat equation are described in [21,11,22,23]. However, we are not aware of any at-
tempts to use these boundary conditions in the problem of modeling crystal growth.

This paper is a follow-up of the work presented in [31]. In that paper, a simplified phase-field model was included in the
numerical results section. Here, we use a different (and anisotropic) model and incorporated the RKC method for the phase
equation. More importantly, we discuss how to apply the FRM method in an appropriate way to the solution of the phase-
field model. We explain how to choose the various parameters in the FRM method as well as show that one can easily incor-
porate adaptive enlargement of the computational domain into the phase-field computation. Much more detailed numerical
results are also included.

This paper is organized as follows: In Section 2, we briefly describe the phase-field model and our discretization of the
coupled thermal field and phase equations. In Section 3, we describe the Fast Recursive Marching method for solving the free
space heat equation and explain how it should be applied to solve the thermal field equation. In Section 4, we show numer-
ical results for the simulation of two-dimensional, anisotropic crystal growth. The lowest undercooling simulated is 0.025.
Section 5 contains the conclusions.

2. The phase-field model for dendritic crystal growth

We will consider the solidification of a pure material. The model we will use are the phase-field equations, which consist
of a coupled system of two diffusion-type equations governing a dimensionless temperature uðx; y; tÞ (the thermal field) and
the phase variable /ðx; y; tÞ.

2.1. The model

We use the following formulation of the model equations, slightly modified from [26]:
ut �r2u ¼ 1
2S
ðhð/ÞÞt ; x ¼ ðx; yÞ 2 R2; t > 0; ð1Þ
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s0aðhÞ2/t ¼
/ð1� /2Þ

D
� s0S

a2w2
0

uð1� /2Þ2 þw2
0

D
r2

aðhÞð/Þ
" #

; x ¼ ðx; yÞ 2 R2; t > 0; ð2Þ
along with the choice of parameters,
hð/Þ ¼ /; a2 ¼ 0:6267; s0 ¼ 1; w0 ¼ 1:
Because the existing code for the FRM method requires that the coefficient of diffusion D ¼ 1, we use the scaled time t ¼ Dt0

in (1) and (2) instead of the time variable in [26], To normalize with respect to the undercooling parameter, we have also
chosen to use the scaled thermal field u ¼ u0=S with respect to what was in [26]. Hence, the variables t and u used in (1)
and (2) are related to their analogues t0 and u0 in [26] via the relations t ¼ Dt0 and u ¼ u0=S.

The thermal and the phase variables are subject to initial conditions:
uðx; y; 0Þ ¼ u0ðx; yÞ; x ¼ ðx; yÞ 2 R2; ð3Þ
/ðx; y;0Þ ¼ /0ðx; yÞ; x ¼ ðx; yÞ 2 R2: ð4Þ
The normalized temperature is u ¼ ðT � TMÞ=DT , where TM is the equilibrium melting temperature at a planar interface and
DT is the melt undercooling (the difference between the melting temperature and the initial temperature in the bulk liquid).
Interfacial properties such as the crystal-melt interface energy and the local atomic attachment coefficient depend on inter-
facial orientation, i.e. they are anisotropic. In (1)–(4) the anisotropy of the material properties is included through the aniso-
tropic Laplacian, which depends on the angle h (for example, the angle that the normal to the iso-/ contours makes with the
x-axis):
r2
aðhÞ ¼ �

@

@x
aðhÞa0ðhÞ @

@y

� �
þ @

@y
aðhÞa0ðhÞ @

@x

� �
þr � ða2ðhÞrÞ; ð5Þ
with h computed by the formula
h ¼ tan�1 @y/
@x/

� �
: ð6Þ
The anisotropy is typically modeled by
aðhÞ ¼ 1þ �4 cos wh; ð7Þ
where �4 is the strength of the anisotropy and w is the crystalline symmetry (e.g., w ¼ 4 for four-fold symmetry).
The phase variable varies from / ¼ �1 (liquid) to / ¼ 1 (solid), corresponding to the liquid and solid phases, respectively.

The value of / varies smoothly but sharply from �1 to 1 in a narrow diffuse interface region. The Stefan number, or dimen-
sionless undercooling, is given by
S ¼ cDT
L
; ð8Þ
where c is the specific heat per unit volume and L is the latent heat per unit volume. The undercooling is the parameter of
primary importance in this paper. Typical simulations reported in the literature assume S to be in the range 0.05–1. However,
experimental results often report values of S in the range 0.001–0.1 [28].

Since we will be using our FRM method to compute the thermal field, we do not require any numerical boundary
conditions on the thermal field. For the phase-field variable, we use the RKC (Runge–Kutta–Chebyshev) method [44]
which is an explicit solver for parabolic PDEs and boundary conditions on the computational boundary will be re-
quired. However, the phase-field variable / can be considered constant in the bulk liquid away from the interface,
and so, assuming the computational domain is large enough to contain the support of the solid–liquid interface,
one can safely impose conditions compatible with / � �1 on computational boundary (e.g. homogeneous Neumann
conditions). Although the equation for / also appears to be a diffusion-type equation, in fact, it is not a true diffu-
sion equation. This can be seen by writing the term raðhÞr/ in tensor notation as rLðhÞr/ and noting that the
resulting anisotropic tensor LðhÞ is skew symmetric, with complex eigenvalues, and so does not behave as a true dif-
fusion tensor [46]. As a consequence, the field for / does not extend beyond the interface and is constant outside of
this region.

The field of interest in the phase-field equations is represented by the phase variable. The thermal field is of
interest near the dendritic tips but is of only secondary interest away from the crystal interface. For this reason,
one would ideally like to use a computational domain for u which is the same size as needed for / even at low
undercoolings. We want the thermal field to diffuse out through the computational boundary as if the boundary
were not there.
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2.2. Discretization of coupled system

We use Algorithm 1 for the coupled equations in (1) and (2). It includes the adaptive enlargement of the computational
domain.

Algorithm 1. FRM/RKC time marching algorithm with adaptive enlargement of computational domain

Initialization:
� Choose rectangular computational domain
X0 ¼ ½�R0
1;R

0
1� � ½�R0

2;R
0
2�;

so that it contains both the support of /0 (support of / is where the phase is not liquid) and the support of u0.
� Choose a spatial discretization N0

x ¼
R0

1
Dx and N0

y ¼
R0

2
Dy. The discretization points are fxi;j ¼ ðiDx; jDyÞ; i 2 f�N0

x ; . . . ;N0
xg;

j 2 f�N0
y ; . . . ;N0

ygg.
For steps m ¼ 0;1;2; . . . on the computational domain Xm:

1. Obtain /mþ1 � /ð�; ðmþ 1ÞDtÞ at fxi;jg 2 Xm using the RKC method by solving
/t ¼
1

s0aðhÞ2
/ð1� /2Þ

D
� s0S

a2w2
0

umð1� /2Þ2 þw2
0

D
r2

aðhÞð/Þ
" #

; t 2 ðmDt; ðmþ 1ÞDtÞ; ð9Þ

subject to the initial condition

/ðxij;mDtÞ ¼ /mðxijÞ;

and homogeneous Neumann boundary condition

@/
@t
¼ 0 on @Xm:

2. Obtain umþ1 � uð�; ðmþ 1ÞDtÞ at fxi;jg 2 Xmusing the FRM method by solving
ut �r2u ¼ 1
2S
ðhð/ÞÞt � f

� �
; ð10Þ

subject to the initial condition

uðx; 0Þ ¼ u0ðxÞ:
3. Decide if the support of /mþ1 is ’close’ to @Xm.
� If so,

(a) Make Rmþ1
1 larger than Rm

1 and Rmþ1
2 larger than Rm

2 . Set Xmþ1½�Rmþ1
1 ;Rmþ1

1 � � ½�Rmþ1
2 ;Rmþ1

2 �.
(b) Extend /mþ1 to fxi;jg 2 ðXmþ1 �XmÞ by the value ’liquid’.
(c) Extend umþ1 to fxi;jg 2 ðXmþ1 �XmÞ by inverse Fourier transform.

� Otherwise, Xmþ1 :¼ Xm.
The computational domain for both (9) and (10) at t ¼ mDt will be Xm, which is supposed to contain the support of /m. It
is clear from (1) that this means that Xm also always contains the source for u.

We treat the coupling of Eqs. (1) and (2) by evaluating the right hand side of each equation using previously computed
values of the variables. This operator-splitting approach is formally first order accurate, although in practice one can often
obtain accuracy rates higher than this.

For Eq. (9) the contribution of u to the right hand side is approximated by its value at t ¼ mDt. The boundary conditions on
@Xm are homogeneous Neumann. Since / � �1 in the bulk liquid, these boundary conditions are acceptable. Spatial discret-
ization of (9) can be done in standard ways, for example, via finite differences.

We solve (10) using the FRM method, the details of which will be given in Section 3. There is no need for
boundary conditions on @Xm because the correct far field behavior of u is automatically satisfied. The right hand
side f of (10) will be treated as known, using already computed values of /, via the following first order in time
approximation:
fmþ1ðxÞ ¼
1
2S

/t �
1
2S

/mþ1 � /m

Dt
: ð11Þ
Higher order methods may be formulated with (9) and (10) as the basic components but will not be discussed here be-
cause the emphasis of this paper is on the correct treatment of the thermal field equation while avoiding overly large
computational domains. The current implementation is done for two dimensions but there is a natural extension to
three dimensions.
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3. Fast recursive marching method

In this section we outline the Fast Recursive Marching (FRM) method and explain how to apply it to solve (10). We will
only point out the main features of the FRM method, details can be found in [31].

The FRM method solves the heat equation in free space with a source term:
~utðx; tÞ � r2~uðx; tÞ ¼ f ðx; tÞ; x 2 Rd; t > 0; ð12Þ

supplemented by the initial condition
~uðx;0Þ ¼ ~u0ðxÞ; x 2 Rd: ð13Þ

The functions f ðx; tÞ and ~u0ðxÞ are assumed to be compactly supported for any fixed t. Because of the choice of the normal-
ization in the phase-field model, we have u ¼ 1 as the base line value for the thermal field in the bulk liquid in the initial
configuration. To obtain the baseline value of 0 and compact support for the initial configuration, we have defined the
new variable ~u ¼ u� 1. We will concentrate on the case d ¼ 2 but will use the notation d if the statement applies to other
dimensions as well.

We recall the right hand side of (10) is f ¼ � 1
2S /t , and that we will use the approximation of it given in (11). Clearly, the

support of f ð�; tÞ is on a narrow band around the crystal-melt interface at time t. (The width of this band depends on the
speed of crystalization.) Given Dt, we will compute the approximate solution at t ¼ Dt;2Dt; . . . ;mDt; . . ., using an increasing
set of computational domains, X1 	 � � � 	 Xm � � �, where each Xi contains the support of f ð�; tÞ, for all t 6 iDt. The domain will
be enlarged adaptively after the support of the phase variable /, which is computed via (9), is determined. In addition, we
will assume that all the computational domains contain the support of ~u0.

The FRM method is applicable to problems where the source term f is k-times differentiable. Let tmax be an estimate of the
longest simulation time of interest, (the actual simulation time may be much shorter), and let B ¼

Qd
i¼1½�Ri=2;Ri=2� be a rect-

angle which contains the support of f ð�; tÞ, for all t 6 tmax. The value maxfR1; . . . ;Rdg will be used to choose certain param-
eters in the FRM method.

We assume that f ðx; tÞ 2 CkðB� ½0; tmax�Þ. This is satisfied because / is smooth in the diffuse interface region. The fact that
/ varies sharply in this narrow region will affect the parameters we choose in the algorithm and we will address this when
we come to the relevant parameters.

From standard potential theory [20], the solution to (12) and (13) can be written as
~uðx; tÞ ¼
Z

Rd
kðx� y; tÞ~u0ðyÞdy þ

Z t

0

Z
Rd

kðx� y; t � sÞf ðy; sÞdy ds; ð14Þ
where the fundamental solution for the heat equation in Rd is
kðx; tÞ :¼ e�kxk
2=4t

ð4ptÞ
d
2

; t > 0: ð15Þ
We will refer to the first integral in (14) as an initial potential and the second integral as a volume potential. Straightforward
discretization of the above integrals leads to an prohibitively expensive numerical scheme – the solution is dependent on the
full space-time history of the diffusion process. If M is the number of time steps, and the computational domain is not adap-
tively enlarged during these M time steps and contains N spatial discretization points, it is easy to see that OðN2M þ N2M2Þ
work is required for those M time steps with a naive discretization.

The Fast Recursive Marching method is the accelerated computation of these integrals. There are three components to the
algorithm;

� We accelerate the time convolution by doing the time stepping in the Fourier domain.
� To compute the inverse Fourier transform, we use an efficient quadrature of the inverse Fourier integral that involves

many fewer Fourier nodes than a naive trapezoidal rule.
� These Fourier nodes are not equi-spaced, so to transform to and from Fourier space in an efficient manner, we use the

Non-uniform FFT (NUFFT) [17,30].

In this way, we are able to reduce the total computational cost of evaluating (14) to OðM � ðNf þ NpÞ logðNf þ NpÞÞ, where
Np is the number of discretization points in the physical domain, and Nf is the number of nodes in the Fourier domain (which
depends on the desired tolerance and an estimate of the smoothness of f). In our numerical experiments, Nf is typically on
the same order as Np. For the same Np, this algorithmic complexity is comparable to finite difference or finite elements meth-
ods. The advantage of this approach is that many fewer points in the physical domain will be needed for long-time simula-
tion of slow solidification because of the smaller computational domain.

3.1. Fourier representation of the solution

We propose time stepping using the Fourier transform of ~u:Z

ûðs; tÞ ¼

Rd
eis�x~uðx; tÞdx; ð16Þ
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where the inverse Fourier transform is given by
~uðx; tÞ ¼ 1

ð2pÞd
Z

Rd
e�is�xûðs; tÞds: ð17Þ
It is straightforward to show that ûðs; tÞ satisfies the ordinary differential equation
dû
dt
ðs; tÞ ¼ �ksk2ûðs; tÞ þ f̂ ðs; tÞ; ð18Þ
where
f̂ ðs; tÞ ¼
Z

Rd
eis�xf ðx; tÞdx: ð19Þ
Thus, time stepping for ûðs; tÞ can take the form
ûðs; tÞ ¼ e�ksk
2Dt ûðs; t � DtÞ þUðs; t;DtÞ; ð20Þ
where
Uðs; t;DtÞ ¼
Z t

t�Dt
e�ksk

2ðt�sÞ f̂ ðs; sÞds: ð21Þ
Thus, in the Fourier domain, time convolution can be accelerated from quadratic complexity to linear complexity: ûðs; tÞ is
simply damped and updated by a local (in time) computation at each time step, as indicated in (20). We will refer to Uðs; t;DtÞ
in (21) as the update integral. The observation in (20) is not new, but for it to be useful, one must be able to choose a small set
of Fourier modes which can adequately represent the function ~u and one must be able to move easily between Fourier and
physical domains.

3.2. Choice of Fourier nodes

The choice of Fourier nodes s depends on our choice of quadrature for evaluating
~uðx; tÞ ¼ 1

ð2pÞd
Z

Rd
e�is�xûðs; tÞds: ð22Þ
An optimal choice for the Fourier nodes is one that results from a quadrature for (22) which meets the desired accuracy
requirements with as few nodes as possible.

Let us recall that the source is smooth: f ð�; tÞ 2 CkðBÞ. Thus, f̂ ðs; tÞ ¼ Oðksk�kÞ for large s. A straightforward calculation
shows that if � is the error tolerance, then the evaluation of f̂ ðs; tÞ in (19) needs to be done only for ksk 6 P, where
P ¼ Oð1=�Þ

1
k . We will refer to P as the high-frequency cutoff.

For the phase-field application, f is a function of /. Since we will be using methods which are of low order accuracy in
time, we choose an error tolerance of � ¼ 10�4 because we do not expect to get more than 4 digits of accuracy. We make
an estimate for the smoothness of /. For example ð1=�Þ

1
2 ¼ 100; ð1=�Þ

1
3 � 22. For our simulations we typically set P ¼ 20

but this can be modified if it is found to be inadequate.
To evaluate the finite Fourier integral
~uðx; tÞ � 1

ð2pÞd
Z
ksk<P

e�is�xûðs; tÞds; ð23Þ
we use a mesh which is clustered toward the origin in s-space on dyadic intervals that is capable of resolving the integrand
for all time to any desired precision �. Intuitively, the reason for this exponential clustering at the origin can be understood

from considering the Fourier transform of the free space Green’s function e�kxk
2=4t

ð4ptÞ
d
2

itself, namely the function e�ksk
2t . For large t,

this function is sharply peaked near s ¼ 0 and the accurate resolution of this function is what ensures that the lowest fre-
quency terms diffuse into the infinite region correctly.

A slight modification of Theorem 2.1 in [18] yields error bounds in one dimension.

Theorem 1. adapted from [18]Let � > 0 be the desired precision, let Lmin ¼ � logð1=�Þ and let Lmax ¼ dlog Pe, where P is the high-
frequency cutoff. Further, let fsj;1; . . . ; sj;nðjÞg and fwj;1; . . . ;wj;nðjÞg be the nodes and weights for the nðjÞ-point Gauss–Legendre

quadrature on the interval ½2j;2jþ1�, where nðjÞ ¼maxðLx2jþ3=2;8 logð1=�ÞÞ. Then, in one space dimension,
Z
jsj<P

e�is�xûðs; tÞds�
XLmax

j¼Lmin

XnðjÞ
k¼1

ðeisj;kx þ e�isj;kxÞûðsj;k; tÞwj;k

�����
����� ¼ Oð�Þ ð24Þ
for jxj 6 Lx, for t 2 ð0;1Þ.



We will denote by Q ¼ Qð�; P; LxÞ the number of nodes required on the positive axis, in one dimension. Using a tensor
product of this one-dimensional rule, and the fact that the physical quantities are real, the number of nodes required in
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the Fourier domain is Nf ¼ ð2QÞd=2, which is of the order Nf ¼ Oððlogð1=�Þ þ LxPÞdÞ (see [31]). If instead of this quadrature
rule, we had used the trapezoidal rule for (23), then O LxP

�

� 	d
nodes would have been required in order to resolve

e�is�xe�ksk
2t for all time t > 0, which is a significantly larger number of nodes, especially when � is small.

The parameter Lx is the largest magnitude of the evaluation points x. Since we have supposed that the largest computa-
tional domain needed will be contained in B ¼

Qd
i¼1½�Ri=2;Ri=2�, we will set Lx ¼maxfR1=2; . . . ;Rd=2g.

3.3. The forward transform

To compute f̂ ðs; tÞ from the data f ðx; tÞ, since we have assumed that the data is supported in the rectangle B, we need to
compute the finite integral:
f̂ ðs; tÞ ¼
Z R1=2

�R1=2
� � �
Z Rd=2

�Rd=2
eis�xf ðx; tÞdx; ð25Þ
where x ¼ ðx1; . . . ; xdÞ; s ¼ ðs1; . . . ; sdÞ.
Let us recall that P ¼ Oð1=�Þ

1
k is the high-frequency cutoff. This bounds the oscillatory behavior of the term eis�x in the inte-

grand of (25). Together with the fact that f ðx; tÞ is smooth, it follows that the trapezoidal rule applied to each dimension in
(25) with N points will yield OðN�kÞ accuracy [9]. In dimension i, the error will begin decaying rapidly once Ni is of the order
OðPRiÞ, meaning that the integrand is well-resolved. If f ðx; tÞ is given on a uniform mesh with Ni points in each dimension, the
trapezoidal rule yields
f̂ ðs; tÞ �
Yd

i¼1

Ri

Ni

� �XN1

n1¼1

� � �
XNd

nd¼1

eis�xn f ðxn; tÞ; ð26Þ
where xn ¼ ð�R1=2þ n1ðR1=N1Þ; . . . ;�Rd=2þ ndðRd=NdÞÞ.
We have used the uniform trapezoidal rule in (26) to obtain our numerical results. But we emphasize here that it is

desirable to use a locally refined spatial discretization of (25) instead, putting a finer discretization of x points near the
crystal-melt interface and a coarser discretization away from it. Given a code which computes / on an adaptive mesh,
for example on locally refined rectangles or triangles, it is easy to generate the quadrature weights to get a modified
rule for the Fourier transform in (25). The only restriction is that the density of the discretization in physical space
still needs to satisfy Dxi 6 O 1

PRi


 �
globally to resolve the oscillations in eis�x. Spatial refinement is then used to resolve

the other term, f ðx; tÞ. We denote the number of points x in physical space by Np (with Np ¼
Qd

i¼1Ni if refinement is
not used).

3.4. The non-uniform FFT

Let us denote by s1; . . . ; sQ and w1; . . . ;wQ the full set of one-dimensional quadrature nodes and weights described in the
preceding section. Then, we need to compute the discrete transform
~uðx; tÞ � 1

ð2pÞd
XQ

j1¼1

� � �
XQ

jd¼1

e�isj �xûðsj; tÞwj1 � � �wjd ; ð27Þ
where sj ¼ ðsj1 ; . . . ; sjd Þ.
The summation in (27) must be carried out for each evaluation point x. Direct evaluation at each of the Np points x defined

in Section 3.3 would require OðNf � NpÞ work. Likewise, the sum (26) must be evaluated at each of the Nf spectral nodes, also
requiring OðNf � NpÞ work.

Since the fsjg are not uniformly spaced, the classical Fast Fourier Transform (FFT) cannot be applied to accelerate this
computation. In the last decade, however, suitable fast algorithms have been developed that we refer to as Non-Uniform
Fast Fourier Transforms (NUFFTs). Detailed descriptions and additional references can be found in [1,12,13,15,17,30,37].
Like the FFT, these algorithms evaluate sums of the form (26) and (27) in OððNf þ NpÞ logðNf þ NpÞÞ work, for any fixed
precision.

When the x points are uniformly spaced, the sums in (26) and (27) are computed by what are called type-1 and type-2
NUFFTs [30]. When spatial refinement in physical space is used, the target and source points in (26) and (27) are both non-
uniformly spaced, and the sums are computed by what is called a type-3 NUFFT.

3.5. Computing the update integral

The update integral (21) can be computed to high order accuracy using a standard product integration approach [9]. We
first approximate f̂ ðs; tÞ by a polynomial in time, and then integrate the resulting polynomial analytically. Linear approxima-
tion of f̂ ðs; tÞ yields second order accuracy and the rule [19]
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Uðs; t;DtÞ ¼W0ðs;DtÞf̂ ðs; tÞ þW1ðs;DtÞf̂ ðs; t � DtÞ; ð28Þ

W0ðs;DtÞ ¼ e�z � 1þ z
z2 Dt; W1ðs;DtÞ ¼ 1� e�z � ze�z

z2 Dt; ð29Þ
where z ¼ ksk2Dt.
For a cubic approximation of f̂ ðs; sÞ, yielding fourth order accuracy in time, we have
Uðs; t;DtÞ ¼W0ðs;DtÞf̂ ðs; tÞ þW1ðs;DtÞf̂ ðs; t � DtÞ þW2ðs;DtÞf̂ ðs; t � 2DtÞ þW3ðs;DtÞf̂ ðs; t � 3DtÞ; ð30Þ
where
W0ðs;DtÞ ¼ ð6þ 2z2 � 6zÞe�z þ ð6z3 � 11z2 � 6þ 12zÞ
6z4 Dt;

W1ðs;DtÞ ¼ ð�z2 þ 2z3 þ 6� 4zÞe�z þ ð�6z2 � 6þ 10zÞ
�2z4 Dt;

W2ðs;DtÞ ¼ ð2zþ 2z2 � 6Þe�z þ ð�8zþ 3z2 þ 6Þ
�2z4 Dt;

W3ðs;DtÞ ¼ ðz
2 � 6Þe�z þ ð6þ 2z2 � 6zÞ

6z4 Dt:
Some care needs to be taken in computing the weights above. If z is small, the formulae above are subject to significant can-
cellation error. In that case, the weights can be computed by Taylor expansion of the exponentials, carried out to a sufficient
number of terms. A reasonable compromise is to switch from the analytic expression to the Taylor series if z < 10�3. Four
terms in the Taylor series are then sufficient for 12 digit accuracy.

3.6. Adaptive enlargement of the computational domain

The computational domain for ~u must contain the crystal-melt interface. As this interface grows in size, we can enlarge
the computational domain. Suppose at t ¼ mDt, the computational domain for both ~u and / is Xm and at the next time step,
we would like to enlarge it to Xmþ1 
 Xm. Since we compute the Fourier coefficients of ~u at t ¼ ðmþ 1ÞDt, which are the val-
ues ûðs; ðmþ 1ÞDtÞ, to obtain ~uðx; ðmþ 1ÞDtÞ on the enlarged domain Xmþ1, we simply perform the inverse Fourier transform
in (27) at the set of points x 2 Xmþ1 instead of only in Xm. All the information about ~u (hence u) is stored in the Fourier coef-
ficients and no information is lost even though the thermal field has expanded far outside of Xm. This is in contrast to a finite
difference/element method where even if exact artificial boundary conditions were imposed on @Xm, it is usually not pos-
sible to accurately reconstruct the solution u outside of the domain Xm.

3.7. The numerical scheme

With the full complement of tools in place, we can now provide an informal description of the Fast Recursive marching
(FRM) method. For lth order accuracy in time, we refer to the method as FRM(l). The method for a second order accurate
scheme is described in Algorithm 2.
Algorithm 2. The Fast Recursive Marching algorithm FRM(2) for solving the heat equation in Rd

Initialization:
1. Choose error tolerance � and high-frequency cutoff P.
2. Estimate the size of the computational domain, which must contains the source, during the simulation time of

interest. Let it be the box ½�R1;R1� � ½�R2;R2�.
3. Obtain Qð�; P;maxfR1;R2gÞ quadrature nodes and weights in Fourier space.
4. Select the time step Dt.
5. Compute weights W0;W1 from (29).
Transform initial data:
1. Initialize ûðs;0Þ at all Nf ¼ Qd spectral nodes by computing the forward NUFFT of ~u0ðxÞ.
2. Compute f̂ ðs;0Þ at all Nf spectral nodes by computing the forward NUFFT of f ðx;0Þ.
For m ¼ 1; . . .:
1. Compute f̂ ðs;mDtÞ at all Nf spectral nodes by computing the forward NUFFT of f ðx;mDtÞ using the data on Xm�1.
2. Update ûðs;mDtÞ according to (20):
ûðs;mDtÞ ¼ e�ksk
2Dt ûðs; ðm� 1ÞDtÞ þW0ðs;DtÞf̂ ðs;mDtÞ þW1ðs;DtÞf̂ ðs; ðm� 1ÞDtÞ:
3. Compute ~uðx;mDtÞ;x 2 Xm, from ûðs;mDtÞ using the (inverse) NUFFT. The domain Xm may be larger than Xm�1.
The total computational cost is OðM � ðNf þ NpÞ logðNf þ NpÞÞ, where Nf is the number of Fourier nodes and Np is the num-
ber of x points in the physical domain. Two NUFFT calculations are required per time step.
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4. Numerical results

We show numerical results for solving the phase-field model equations in (1) and (2) using Algorithm 1 which computes
/ using the RKC method and computes u using the FRM method. The anisotropy parameters we have chosen are
d 0 d
x/

dt
w ¼ 4; �4 ¼ 0:05:
The two important parameters which will vary in the numerical experiments will be the diffusion coefficient D and the und-
ercooling parameter S. Steady-state tip velocities were calculated for the following cases:

1. S ¼ 0:65;D ¼ 1,
2. S ¼ 0:55;D ¼ 4,
3. S ¼ 0:025;D ¼ 400.

We compare our results with those obtained in [26]. The spatial discretization for our algorithm was Dx ¼ Dy ¼ 0:4, the
same as in [26]. We were able to use larger time steps: Dt ¼ 0:1 for case 1, Dt ¼ 1 for case 2, and Dt ¼ 10 for case 3, than that
used in [26] due to the fact the RKC method admits large time steps and the FRM is unconditionally stable. The time step
used in [26] was Dt ¼ 0:016 which is equivalent to Dt ¼ 0:016 for case 1, Dt ¼ 0:064 for case 2, and Dt ¼ 6:4 for case 3.
For case 1 we obtained v tip ¼ 0:0469 compared with v tip ¼ 0:0465 in [26]. For case 2 we obtained v tip ¼ 0:0172 compared
with v tip ¼ 0:0174 in [26].

We also computed a case of very low undercooling, case 3, where S ¼ 0:025 and D ¼ 400. This undercooling is much lower
than the cases computed in [26], where S ranges from 0.65 to 0.25. We obtained a steady state tip velocity of 3:46� 10�7. We
were not able to compute a Green’s function steady-state solution for this case as was done in [26] for higher undercoolings
due to the lack of a publicly available code to make this calculation. Tip position and velocity as function of time for these
simulations are shown in Fig. 1.

We now discuss case 3, where S ¼ 0:025 and D ¼ 400, in more detail. Snapshots of the crystal at various time points for
the low undercooling case, S ¼ 0:025 and D ¼ 400, are plotted in Fig. 2. The crystal and the thermal field are shown inside the
computational domain Xm at each time point. The computational domain goes from ½�10;10� � ½�10;10� at t ¼ 0 to
½�256;256� � ½�256;256� at t ¼ 600;000. Since all the information about uð�;mDtÞ is stored in the Fourier coefficients,
ûð�;mDtÞ, enlarging Xm just involves computing the inverse Fourier transform at a larger set of x points at the current time
step. This is in contrast to finite difference/elements methods where one must enlarge Xm as soon as the support of um ap-
proaches @Xm; in our approach, we do not have to enlarge Xm until the support of /m approaches @Xm, a great advantage at
low undercoolings. In Fig. 3 we show the support of the thermal field at t ¼ 300;000 which is much larger than the compu-
tational domain we used (½�174;174� � ½�174;174� at t ¼ 300;000).
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Fig. 1. Steady state tip velocity.



Fig. 2. The thermal field and phase plotted on the adaptive computation
computed via the RKC method. When the thermal field is computed with
simulation can continue until the solidification front reaches the computa
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We made an estimate that the crystal will be bounded on the box ½�300;300� � ½�300;300� for all simulation time of
interest, meaning that steady state will be reached before the crystal reaches this size. This means that R1 ¼ R2 ¼ 300 in
the FRM method. With our choice of the high-frequency cutoff P ¼ 20 and the error tolerance � ¼ 1e� 4, we have 1903 po-
sitive Fourier nodes in one dimension, this means that there are Nf ¼ 2ð1903Þ2 ¼ 7;242;818 total nodes in the Fourier do-
main in two dimensions. For case 3 at t ¼ 600; 000 there were Np ¼ 12802 ¼ 1;638;400 nodes in the physical domain. In this
example, both FRM(2) (for u) and RKC (for /) use the same number of (uniformly spaced) discretization points in physical
space.

RKC method is an explicit method where in each time interval Dt a number of stages are taken where the right hand side of
Eq. (9) is evaluated several times. Each evaluation of the right hand side requires OðNpÞ work. The number of evaluations per
time step Dt ranges from two to ten. In each time step of FRM(2), two non-uniform FFTs are computed. Typically, a NUFFT
takes three times as long as one uniform FFT. We expect that for the same Np, one iteration of FRM(2) will take six times
as long as one right hand side evaluation of RKC. If there are two right hand size evaluations in one step of the RKC method,
then the ratio between the timings of one iteration of the FRM(2) method and one iteration of the RKC method will be three to
one. The ratio will be smaller if the number of right hand side evaluations per step of the RKC method is higher than two. We
show in Fig. 4 the timings of the RKC method and the FRM(2) method over a range of time steps near the end of the simulation.
The average time of the FRM method is about twice that of the RKC method per time step. The number of spatial discretization
points (normalized by dividing by max Np) is also plotted in the figure. It is clear that the timing for RKC increases as Np

increases. The largest prime factor of Np (normalized by dividing by max flargest prime factor of Npg) is also plotted (labelled
’LPF Np’). It is clear that the timing of FRM(2) is influenced by the size of the largest prime factor of Np, which is expected.
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al domain. The thermal field is computed via the FRM(2) method. The phase is
the FRM method heat diffuses out of the computational domain correctly and
tional boundary.
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While we have demonstrated our solver on the phase-field equations, it can also be incorporated into solvers for the sharp
interface model. This would involve solving an initial boundary value heat equation instead of the free space heat equation
with a source term.
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